Decarb Lunch Series

Powered by ZCIC

PASSIVEHOUSE CANADA Build better. Feel better.

Marpole Community Centre

Achieving 40% Embodied Carbon Reduction on Passive House Design Thu Oct 10, 2024 from 12 - 1pm PDT Free Webinar zebx.org

Powered by ZCIC MORE SOLUTIONS, LESS CARBON.

FOCAL ENGINEERING

About

12 people & 10 yearsVictoria / Vancouver / Nanaimo

Building Performance

- Energy & emissions
- New & existing buildings

Values

Carbon Neutral

• Equity, Diversity, Inclusion

PASSIVEHOUSE CANADA Build better. Feel better.

Marpole Community Centre

Caroline Inglis

Forest Borch

cinglis@dsai.ca

forest@reloadsustainable.com

diamon schmitt

agenda

- Project Introduction
- Values, Vision, Principles, and Goals
- Balancing Operational vs Embodied Carbon Goals
- Achieving Embodied Carbon Reductions
- Q&A

Project Introduction

Stats

Client: City of Vancouver GC: Heatherbrae Builders Co

Size: 6,140 sqm/66,090 sqft (+underground parkade) Cost: \$96 million Phase 1 Completion: 2026

Passive House

LEED Gold

40% Embodied Carbon Reduction

RHFAC Gold

Our vision is to make the Marpole Community Centre the most inclusive, forward-thinking, and high performing facility the City of Vancouver has ever had.

Values, Vision, Principles, and Goals

To make the Marpole Community Centre the most inclusive, forward-thinking, and high performing facility the City of Vancouver has ever had.

Aggressively minimize greenhouse gas emissions associated with the operation and construction of the facility

- 1. Eliminate the use of fossil fuels
- 2. Generate renewable energy on site
- 3. Achieve a TEDI of <15kWh/m²/yr
- 4. Reduce the carbon intensity of the building by 40%

water	Minimize the consumption of municipal por water, and use rainwater to minimize impac stormwater infrastructure.	table1. Accommodate 90% of the annual rainfall on site, or first 48mm of a 24hr period. 2. Create meaningful and deliberate landscapes to manage water on site. 3. Celebrate water in an expressive and culturally impactful way.
biodiversity	The project will increase biodiversity in Oa	 Ensure a net increase in tree cover and a diversity in age and species Create new habitat for plants and animals not present in Oak Park. Design with ecological benefits in mind. Make space for culturally significant plants and planting patterns
biophilia	The project will seek connections to nature both through landscape design and buildin configuration and materiality.	 Prioritize natural materials. Create meaningful connections between interior and exterior spaces. Embrace the park setting. Prioritize superior daylight and air. Employ natural patterns and motifs in the design.
resilience	Anticipate future climate conditions and events, and be capable of operating with minimal adaptation.	 Anticipate future climate and accommodate changes. Address consequences of known hazards and mitigate them. Build with the intent of longevity. Anticipate future needs.
waste reduction	The project will demonstrate and support t minimize waste.	 Conserve heat energy. Configure space to make recycling and composting 'automatic'. Minimize use of materials. Reduce waste generated during construction.
celebration	Create a place for optimism and delight.	 Create a vibrant place for the community to gather and celebrate. Celebrate the history of the place

responsibility

2.1 Respect the project budget and schedule

biophilia

10.1 Prioritize the use of natural materials.

energy + carbon

6.2 Reduce the embodied carbon intensity of the building by 40%

Balancing Operational vs Embodied Carbon Goals

Passive House Requirements

low energy

kWh/m²/yr

Space Heating Energy Demand

(Thermal Demand Energy Intensity)

airtight

Passive House Principles

Image from Passive House Institute

https://passiv.de/en/02_informations/02_passive-house-requirements/02_passive-house-requirements.htm

Achieving Embodied Carbon Reductions

WHAT WE DO

Building Design Advisory

Design Strategy Development AHJ Code Compliance - VBBL, BCBC Energy Specialists - Step Code, ASHRAE, NECB, Passive House Low-Carbon Design Experts - LEED, Net Zero, LBC, Policy

reLoad

Sustainable Design Inc.

Building Performance Analysis

Energy Modelling Whole Building LCAs & Embodied Carbon CFD, Natural Ventilation & Daylighting LCCAs & Cost-Benefit Studies

Performance Management

CAGBC – Zero Carbon Building Certification Clean BC Incentive Studies FCM & CMHC Funding Studies Technical Review Teams

Climate Adaptation & Resilience

Warming Climate Planning Thermal Comfort Studies Scenario Testing 2050s & 2080s

WHO WE ARE

OUTLINE

- Project Context and Goal Overview
- Baseline and City of Vancouver Embodied Carbon Guidelines Pilot
- Low-Carbon Design Strategies
 - Early-Stage Coordination for Carbon-Conscious Design
 - Enabling Mass Timber Structure
 - Construction Management & Procurement Collaboration
 - Reduce Below-Grade Parking for less Cost and Carbon
 - Insulating for Passive House: Carbon Considerations
- Current Project Carbon Status

CITY OF VANCOUVER CLIMATE ACTION PLAN 2020-2025

HOW WE BUILD AND RENOVATE

We need to build and renovate differently. We have to construct and operate Vancouver's buildings in a climate-friendly, healthy, and resilient way. By 2030, we're aiming:

- To cut our carbon pollution from buildings in half, compared to what we had in 2007
- For 40% less embodied emissions from new buildings and construction projects compared to 2018

WHY DO GHG EMISSIONS MATTER?

Vancouver Average Weather – Environment Canada

PROJECT GOAL SETTING IN PRE-DESIGN

Estimated Annual Green House Gas Emissions: 0 kgCO2e 1 Litre of Gasoline produces 2.3kg of CO₂e.

Green House Gas Intensity (GHGi) is expresed in kgCO₃e or kiliograms of carbon dixoide equivalent. It is the amount of carbon dioxide released from the building during operation.

1 Litre of Gasoline produces 2.3kg of CO2e.

Embodied Carbon is expresed in kgCOze or kiliograms of carbon dixoide equivalent. It is the amount of carbon dioxide released in the creation of the building.

Baseline & Embodied Carbon Guidelines Pilot

PILOT PROJECT FOR EMBODIED CARBON GUIDELINES

	2020	OPR, 40% Reduction Based on "2018 Baseline"
Pre-Design	2021	reLoad, DSA, CoV work collaboratively to establish performance based
SD		largels based on the 2018 baseline.
50	2021	First draft of "LCA Modelling Guidelines" are released.
DD	2022	First wbLCA complete at DD stage & feedback provided to City.
	2022	Concrete BC releases BC Member Industry Wide EPD for Ready Mix Concrete.
CD	2023	wbLCA complete at BP using CoV Embodied Carbon Guidelines v0.3.
	2023	CoV Embodied Carbon Guidelines v1.0 released & BP wbLCA checked.

BASELINE DEVELOPMENT

Assembly	Materials Assumption
Below-grade structure Footings & Foundation	CRMCA GUL 15% SCM No air entrainment
Columns & Beams	At equivalent strength
Stairs	 266 kgCO₂e at 0-25 MPa to 477 kgCO₂e at 56-60 MPa
Interior Walls	Not considered
Exterior Walls	 GWB, steel-stud, mineral wool batt insulation (equivalent R-value), aluminum cladding. Curtain wall (e.g., Kawneer EPD) for community centre typology for some areas.
Glazing	Aluminum frame window wall Same # panes as proposed
Roof	 Steel beams with inverted roof, reduced GWP XPS insulation

Questions in early design:

- How much parking does the baseline have?
- Should the baseline insulation be VBBL or Passive House?
- Is wood carbon negative?

Embodied Carbon Guidelines Functional Equivalence:

- Min. parking in CoV Parking Bylaw.
- Thermal equivalence should be maintained.
- Biogenic carbon is counted separately.

Marpole Low-Carbon Design Strategies

reLOAD Sustainable Design Inc.

GOLDEN TRIANGLE TO A CARBON SQUARE

EMBODIED CARBON – DESIGN INTEGRATION – KEY PLAYERS

reLoad Sustainable Design Inc.

Source: reLoad Image

EARLY-STAGE MASSING ANALYSIS

BP CONTRIBUTION ANALYSIS: BUILDING MATERIALS

BP CONTRIBUTION ANALYSIS: BUILDING ELEMENTS

PROJECT SPECIFICATIONS - 1

Marpole Community Centre Diamond Schmitt Architects Project No.: 200011

Submittals

- .1 A Base Bid representing 'business as usual' and an Alternate Bid lower Global Warming Potential (GWP).
- .2 A complete Embodied Carbon Tracking Form, to be supplied by the *Construction Manager*.
- .3 Environmental Product Declarations (EPDs) to substantiate GWP claims that are facility, mix, or product specific for both the Base Bid and the Alternate Bid. The Global Warming Potential (GWP), measured in kgCO₂e per [Unit], as provided in EPD(s) submitted will be included in the assessment of submittals.
- .4 If facility, mix, or product specific EPDs are not currently available:
 - .1 GWP numbers utilizing industry averages will be assumed, e.g., those from the Carbon Leadership Forum (https://carbonleadershipforum.org/clf-materialbaselines-2023/).
 - .2 The following questions shall be answered:
 - .1 Will you commit to providing facility, mix, or product specific EPDs for this *Project* by the construction start date?
 - .2 If not, why not?
 - .3 If so, will you charge the *Project* for the generation of facility, mix, or product specific EPDs?

EMBODIED CARBON TRACKING FORM

	Information	Description	GWP, per EPD		EPDs Are Required.	EPD Expiry	U	nit Cost		То	tal Cost
Product Name	Туре	(location on project)	[kgCO₂e/unit]	Unit	Are they Attached?*	Date	I	[\$/unit]	Unit		[\$]
Example Ocean mix LH30E0YB6D08, 30 MPa Concrete, 56 day	Base Bid / Design	L1 Structural slab	275.0	m3	Yes	12-16-2026	\$	1.00	m3	\$	300.00
	Base Bid / Design						\$	-		\$	-
	Alternate						\$	-		\$	-
	Other						Ś	-		Ś	-
							Ś	-		Ś	-
Elements Required to Track Embodied	Carbon:						¢	-		¢	-
2. Structural Steel & Metal Deck							÷			÷.	
3. Rebar							Ş	-		\$	-
4. Fireproofing											
5. Curtain Wall, Window Wall, and Storefro	ont systems										
6. Glass and Other Glazing Products											
7. Aluminium or Steel Extrusions for Glazin	g Systems										
8. Glue-Laminated Timber											
9. Cross-Laminated Timber											
10. Dowel-Laminated Timber											
11. Gypsum wall board											
12. Insulation all types											
13. All Structural Elements, refer to Bounda	ary below.										
14. All Envelope Elements, Incl. major layer	's or										
components of an assembly. Finishes (eg p	aint) and										
and glue etc) are optional. For example, an	ans, screws oxtorior wall										
should include major elements like cladding											
moisture/vanour/air barriers, insulation, w	e, strapping,										
framing and gypsum wall board	000										
name, and sypson namound.											

PROJECT SPECIFICATIONS - CONCRETE

Marpole-Oakri	dge Community Centre	Section 03 30 00
Vancouver, B.0	2.	CAST-IN-PLACE CONCRETE
December 21,	2022	Page 7
\sim	\sim	\dots
8. 3	The maximum A1-A3 Global Warming Potential, GWP, r	measured in kgCO2e/m3, of the
5	Base Bid is to meet the maximum GWP specified on the	e structural drawing
5	specifications, to be substantiated by a product specifi	c, Type III, EPD in accordance with
8	ISO 14025 and complying with ISO 21930 (2017).	

ELEMENTS	MIN. 56 DAY STRENGTH MPa (psi)	EXPOSURE CLASSIFICATION	GOBAL WARMING POTENTIAL (kg CO ₂ eq per m ³)
Foundations and Footings	25 (3600)	-	182
Walls	35 (5000)	F2	215

۲

Project specified maximum GWP limits for concrete.

Project claimed **155 tCO₂e** reduced from concrete at BP.

Procuring lower GWP concrete from Lafarge, with **238 tCO₂e** reduction – 6% from baseline.

Increased cost of **\$9,000** (**0.1%**) (Jan. 2024). ~\$35/tCO₂e.

ENVIRONMENTAL IMPACTS

Declared Product:

Mix RMXUG25A3A8M • Kent Avenue Ready-Mix Plant Description: ECOPACTMAX25 20MM 1-4% Compressive strength: 25 MPa at 56 days

Declared Unit: 1 m³ of concrete

Global Warming Potential (kg CO2-eq)	130
Ozone Depletion Potential (kg CFC-11-eq)	7.49E-6
Acidification Potential (kg SO ₂ -eq)	0.90
Eutrophication Potential (kg N-eq)	0.14
Photochemical Ozone Creation Potential (kg O_3 -eq)	15.3
Abiotic Depletion, non-fossil (kg Sb-eq)	3.75E-6
Abiotic Depletion, fossil (MJ)	524
Total Waste Disposed (kg)	0.54
Consumption of Freshwater (m ³)	3.68

Product Components: crushed aggregate (ASTM C33), admixture (ASTM C494), natural aggregate (ASTM C33), slag cement (ASTM C989), batch water (ASTM C1602), portland limestone cement (ASTM 595)

- Project set on rigid grid to minimize transfer slabs.
- Biogenic carbon accounting for bio-based building materials is evolving and counted separately.
- Both volume of material and embodied carbon intensity of material contribute to embodied carbon savings for mass timber.
- Fire approach must be considered.
- Long lead times for Mass Timber.

Table 3: Results Summary for 1 m³ CLT Cradle-to-Gate Scope

Core Mandatory Impact Indicator		A1-A3	A1	A2	A3
Global warming potential – Total	kg CO2e	124.50	-953.23	0.33	1077.41
Global warming potential - Fossil	kg CO2e	124.50	92.40	0.33	31.78
Global warming potential - Biogenic	kg CO2e	0.00	-1045.63	0.00	1045.63

reLoad Sustainable Design Inc.

Cradle to Gate EPD for Cross Laminated Timber produced by Kalesnikoff in South Slocan, BC

Parking reduced by over 40% by enhancing provisions for active, public, and alternate forms of transport.

Saved ~\$3.5M in construction costs.

Decreased embodied carbon of project by 702 tCO₂e – 19% compared to baseline.

REBAR

Specifications called for Base Bid and Alternate Bid for lower-carbon rebar.

Declared **0 tCO₂e** reduced at BP.

Alternate bid for lower GWP rebar from Nucor came in at 15% cost increase (\$155k) for **113 tCO₂e** reduction. ~\$1,300/tCO₂e.

Project assumed North America industry average rebar EPD (CRSI 2022) but is sourcing internationally.

Roofs & floors: XPS insulation required due to high compressive strength and resiliency requirements.

Walls: Few alternatives to mineral wool due to resiliency requirements.

Sopra Suprema XPS sole-sourced due to significantly lower GWP.

Reduced project emissions by 143 tCO₂e.

No cost premium identified.

EMBODIED CARBON SAVINGS AT BP

MARPOLE: CURRENT STATUS

MARPOLE: CURRENT STATUS

CUMULATIVE CARBON EMISSIONS

MARPOLE: SUMMARY

- 1. Ambitious client targets fuel innovation.
- 2. Mass timber structure not as low-carbon as perceived in pre-design.
- 3. Sufficiency is a climate change solution, and it costs less.
- 4. Procurement phase is essential to realize embodied carbon reductions.
- 5. Next steps:
 - Continue to track EPDs and material quantities during construction.
 - ii. Conduct final wbLCA at substantial completion.

View of East Entrance of the Proposed Marpole Community Centre

Design Team

- Structural: Fast + Epp
- Mechanical: Introba
- Fire Suppression: Introba
- Electrical: Introba
- Landscape: PFS Studio
- Civil: Aplin Martin
- Code: Jensen Hughes
- Building Enclosure: RDH Building Science
- Passive House: RDH Building Science
- LEED: Introba
- Embodied Carbon: reLoad
- Coast Salish Design Consultant: Sky Spirit Studio
- Acoustics: RWDI

Questions?

Caroline Inglis cinglis@dsai.ca

Forest Borch forest@reloadsustainable.com

Embodied Emissions

____Stream 2

An applied research project for low-rise homes that minimize embodied emissions.

Utility Data Stream 4

A ZEBx utility data collection initiative to determine the real emissions and energy profiles of BC homes.

nearzero.ca

JOIN US AND CELEBRATE FIVE YEARS OF CLF BRITISH COLUMBIA

WED OCT 16, 2024 FROM 5PM Ventura Room, 695 Cambie St, Vancouver clfbritishcolumbia.com Carbon Leadership

Forum

British Columbia

Powered by ZCC

Powered by ZCIC

BC's Centre of Excellence for low carbon building.

We seek to accelerate the reduction of embodied carbon in buildings, through the growth of knowledge, promotion of best practices, and fostering collaboration.

Industry Resources Network & Exchange Events & Awards

Learn More About CLF BC

